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Space debris removal

Orbit transfer of debris is essential for the debris removal technology.

Debris catcher technology the ion beam shepherd (IBS) technology
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Kitamura et al., Acta Astronautica, 2014
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Propulsion device and catcher technology Two propulsion devices (ion thrusters)
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FIG. 1. Chi-Kung reactor implemented with a convergent-divergent mag-
netic nozzle, showing the major components and diagnostic probes. The
calculated field lines are plotted within the reactor geometry.

Zhang et al., APL 2016
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FIG. 2. (a) Right labelled y-axis: On-axis magnetic flux density generated
by a current of 9 A supplied into the solenoid, measured using a gaussmeter
(7)) and calculated by the Biot-Savart law (solid line). Left labelled y-axis:
axial profile of normalized ion saturation current measured by the LP (D).
(b} Axial profiles of plasma potential measured by the EP ((0), beam poten-
tial obtained by RFEA_c (%) and RFEA_s (&), and plasma potential
obtained by RFEA_c (<) and RFEA_s (A). The vertical dashed line show
the location of source-chamber interface at 2 = Ocm.

Bi-directional ion acceleration in a helicon source
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FIG. 3. IEDFs obtained by (a) RFEA_c at z = 7 c¢m 1n the diffusion chamber
and (b) RFEA_s at z = —25cm in the plasma source, for current values of
9A (solid line) and 5A (dashed-dotted line) supplied into the solenoid.



Motivation

Demonstrating the space debris removal by one propulsion device (magnetic nozzle helicon thruster).




Thrust generation by the helicon thruster

m;V - (n;v;v;) = ¢;n;(E+v; xB)
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Electron Diamagnetic Effect on Axial Force in an Expanding Plasma: Experiments and Theory

Kazunori Takahashi,'** Trevor Lafleur.' Christine Charles,' Peter Alexander.' and Rod W. Boswell'
Spuu Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering,
The Australian National University, Canberra ACT 0200, Australia
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The axial force imparted from a magnetically expanding current-free plasma is directly measured for
three different experimental configurations and compared with a two-dimensional fluid theory. The force
component solely resulting from the expanding field is directly measured and identified as an axial force
produced by the azimuthal current due to an electron diamagnetic drift and the radial component of the
magnetic field. The experimentally measured forces are well described by the theory.

Total momentum (Thrust)
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Thrust arising from the MN

PRL 110, 195003 (2013)
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Approaching the Theoretical Limit of Diamagnetic-Induced Momentum
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Effect of neutral gas injection on the thrust

APPLIED PHYSICS LETTERS 109, 194101 (2016) @ o
Modifications of plasma density profile and thrust by neutral injection Car up (sCCM)
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Neutral gas injection affects the density profile and the resultant thrust generation.



Two gas injection ports for inhibiting the
effect of the asymmetric neutral injection

No back plate cases
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1-m diameter

Simultaneous measurements of the forces to
the thruster and target (debris)
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Displacement signals

(a) thrulst bal1lancle . (b) tgrlgletl e thruster debris
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Control by B fiend configuration

500 w T T T ‘
4001 .
@ 3001 M b
o 200f .
100'_-' o b
0-20‘-1‘0‘ (‘) ‘ lb | 20 30
z(cm)
M:
zero thrust and force to the target
Debris removal mode
D:
Larger thrust accelerating the spacecraft
Acceleration mode
U:
Large thrust decelerating the spacecraft
Deceleration mode
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Density measured at 25 cm upstream
and downstream of the thruster exits

Thruster center is z=-10.9 cm.

The measurements are performed at z =-35.9 cm and 14.1 cm.
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Axial density profiles
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The density profile modified by the magnetic field configuration (perhaps ionization profile or
the inhibition of the loss to the wall by separating the plasma from the wall) seems to
dominate the momentum exhausted into the upstream and downstream direction.
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own_zdown_Bconfig.ngp
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Density measured at 25 cm upstream
and downstream of the thruster exits
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Axial density profiles
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The local ionization seems to be one of the reasons why the density upstream and
downstream of the exits are controlled by the gas injection.



Conclusion

The upstream and downstream plasma flows exhausted from the

helicon plasma thruster is successfully controlled by the magnetic
field configuration.

The simultaneous measurement of the forces to the thruster and

the target demonstrates the concept of the space debris removal
by one electric propulsion device.

Furthermore, the thruster can be operated at ‘space debris
removal mode’, ‘acceleration mode’, and ‘deceleration mode’ for
the different magnetic field configurations, i.e., all the operation
modes can be performed by the one electric propulsion device.






Electrostatic acceleration and energy
transfer from electrons to ions
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Axial momentum lost to the radial wall
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FIG.2. Spatiotemporal evolution of (a) /;; and (b) AB,, taken for Iz = 4.5 A and Py =5 kW. The rf power is triggered at r = 0 and
the signals are averaged over 16 shots, where the measurements are performed at ~1200 points (~20 points along z and ~60 points along
r). A movie can also be found as Supplemental Material [29].
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Physical picture of the data

PHYS ORG:
On the road to creating an electrodeless spacecraft propulsion engine



Transition condition analysis U Mi*Cs~ 3.5 kim/s
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FIG. 3. (a),(b) Temporal evolutions of the axial profile of AB, on axis for Iz = 4.5 and 10 A. Open squares are the times giving the
temporal density peak as a function of z, and the fitted lines correspond to the propagation velocity of the density peak. White solid lines
show the time giving the maximum AB,. Black solid lines correspond to the contour lines of AB, = 0 implying the diverging-to-
stretching transition. (¢) lon Mach number measured by the MP at z = 20 c¢m as a function of the rotational angle ¢ of the probe shatt
together with the fitted sin function. (d),(e) Axial profiles of AB, as functions of Iz and P, where the data at the times giving the

maximum AB, |white solid lines in Figs. 3(a) and 3(b)| are plotted.
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What parameter decides the
transition?

Many people believe that the stretch occurs for the super Alfvénic flow (M, = v/v, > 1)
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FIG. 4. Measured plasma density n, and the square of the

applied magnetic field strength B, at the transition positions. The

solid lines and the bold dashed line correspond to Eq. (1) for

various values of the Alfvén Mach number M, and Eq. (3),

1{}1{} 0.2 0.4 0.6 0.8 1 respectively, where the measured values of v =2 km/s and
n, (x10'2 em™) T.= 5 eV are used for the calculation.
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The experiment shows that the transition occurs at the

lower Alfvén Mach Number than people thought.
Takahashi and Ando, PRL2017



Transition model in an ideal MHD approximation (1)

Magnetic pressure force
Inertia term 5
VB2 (B-V)B

p(v-V)v=—-Vp— — +
211 [l

Pressure force Magnetic tension \
Upstream limit

Downstream limit

1- Zero velocity (v~ 0) 1- low plasma pressure (p ~ 0)
2- Straight axial magnetic field

o , 2- low magnetic field
(negligible tension term) (negligible magnetic pressure)

2
B-V)B
Vi{p+=—)=0, _
(p 2,&) plv-V)v 1
B? B2, pv? B?
hence P+ 0 = 2 , I —E
2
pressure v2~V2 = (Buac+AB)
1 Negative B, mni
magnetic pressure

B
\_ /f For v > Vypae = ——
plasma pressure /‘X r

AB should be positive to maintain the equilibrium.



Transition model in an ideal MHD approximation (2)

Intermediate condition

Takahashi and Ando, PRL2017
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AB should be positive to maintain the equilibrium.




